

Modeling and solving optimization problems with decision diagrams

February 16, 2023

Hello and welcome

Ryan O'Neil
CTO at Nextmv

Integer scientist, cat and early music enthusiast, Go user

A brief history optimization

Once upon a time in 1940 to now with many matrices

What are decision diagrams?

Overview of fundamentals, state-based search, hybrid solving

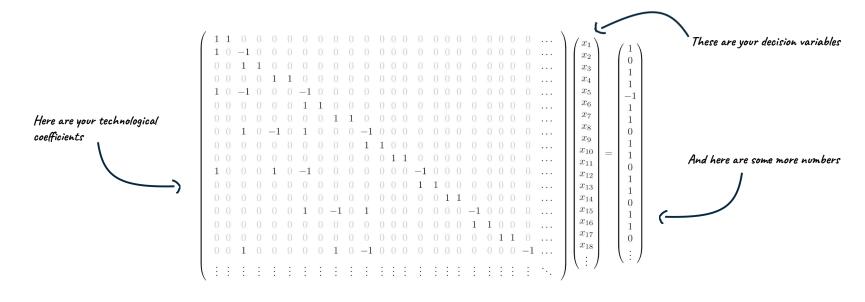
Decision diagrams in action

Opportunities DDs offer for vehicle routing, runtime, and more

Q&A time

Ask questions in the chat or Q&A feature

A brief history of optimization


Once upon a time in the 1940s

We were really good at linear algebra. So we used matrices as the underlying vehicle for optimization solvers. And many of our problems looked like this:

This was a lot of work for the modeler

Modelers became logic tricksters. How do I use a matrix row to add precedence or capacity constraints to a TSP? Or represent either/or logic?

As time passed, we gained some perspective

What is optimization?

Optimization is the search for a minimum or maximum solution to some feasible set according to a given objective function

What does optimization do?

Optimization helps us make good decisions when many choices are available

What are learning now?

The initial structure of optimization is sort of a historical accident, and optimization has less to do with math as we've traditionally been taught.

Optimization is a series of strategies for evaluating and making decisions

Pulling from John Hooker's framework, nearly all successful approaches to solving large or difficult problems are based on three elements.

1. **Search:** Enumerate possible solutions.

2. **Inference:** Learn as we explore.

3. **Relaxation:** Simplify hard problems.

In the now times for decision and OR ops

Our data looks more like this:

```
100
        "id": "vehicle-10"
         "capacity": 125
  "stops":
        "id": "order-1-pickup-1"
        "position": {
           "lon": -96.827094
          "lat": 33.004745
         "precedes": "order-1-dropoff",
         "quantity": -27
        "id": "order-1-dropoff"
        "target_time": "2023-05-25T04:24:20-6:00"
```

But our process looks like this:

- Translate business rules to linear inequality systems
- Hand off to a solver
- Translate solutions back to business rules

So if we think about optimization less as math and more as strategy...

...can we build models in a way that's more natural to the problem we're trying to solve?

Let's talk decision diagrams

First, some acknowledgements

We are applying this work to problems in industry. A lot of amazing folks at Carnegie Mellon and other places figured out how to use DDs to solve optimization problems, including...

- David Bergman
- Andre A. Cire
- Willem-Jan van Hoeve
- John Hooker
- And others!

What is a decision diagram?

A decision diagram (DD) is a layered, directed, multigraph that represents a set of choices. The layers correspond to the order in which we make decisions.

An "exact DD" has a path from the root node to the terminal node for every solution. The arcs costs of a path sum up to its objective value.

This turns minimization (maximization) problems into shortest (longest) path problems.

Where do DDs live in the world of optimization?

MIP

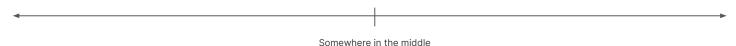
Mixed integer programmingStrong optimality reasoning

"This is the best solution!"

DDs

Decision diagramsGood at finding feasible

solutions, can prove optimality

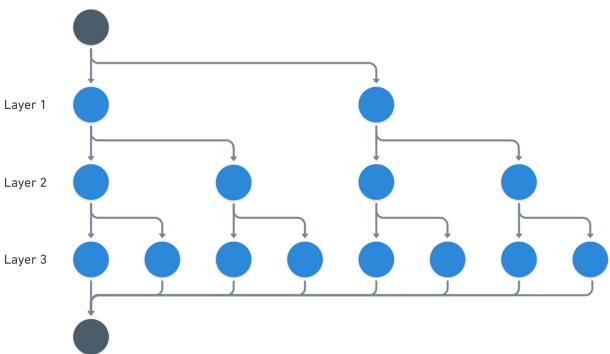

"This is a good, timely solution!"

CP

Constraint programming

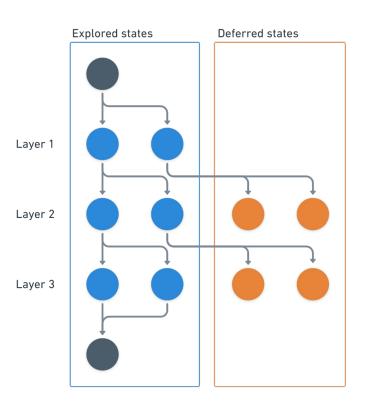
Strong feasibility reasoning

"Here are solutions!"



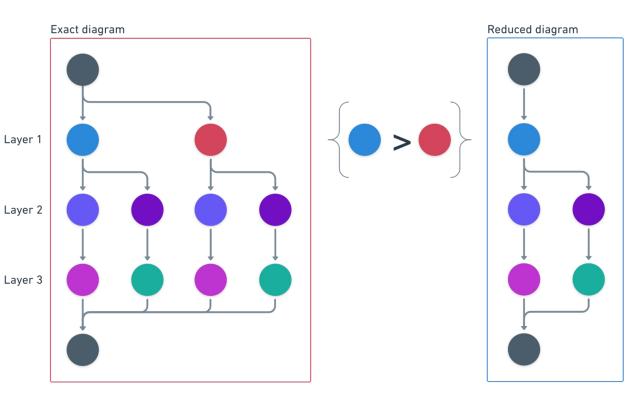
SEARCH Exact diagram

Show all possible states — and watch the tree get big, fast

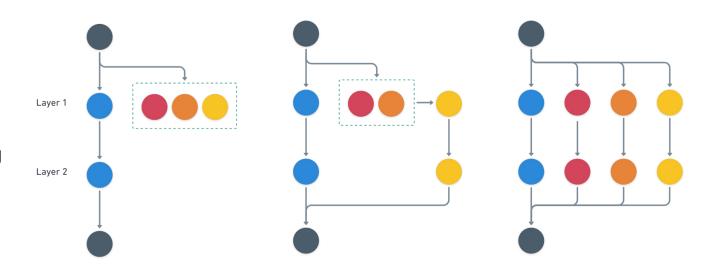


SEARCH

Restricted diagram


Selectively explore some states now and some states later

Reduced diagram


Learn as we explore to avoid non-productive branches of the search tree.

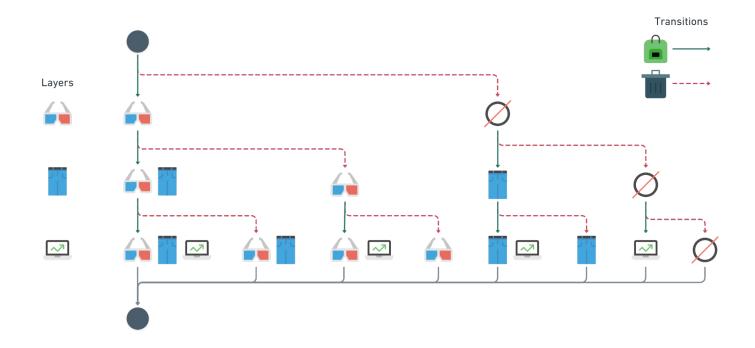
Relaxed diagram

Simplify hard problems by grouping states together to reduce complexity.

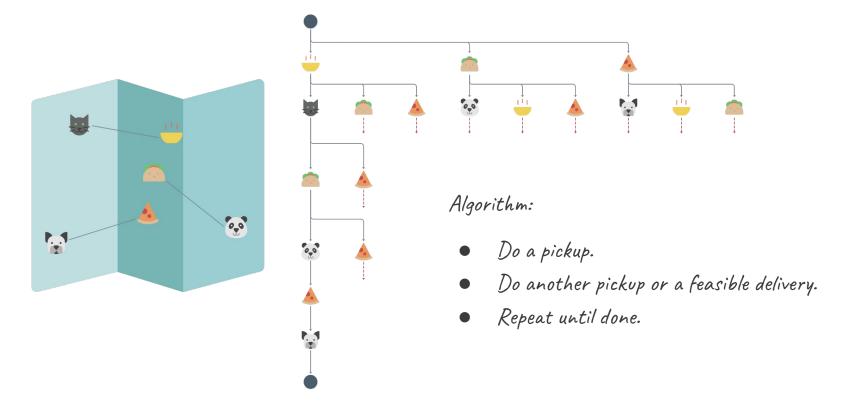
What do we use in our DD solver?

- We don't use relaxation diagrams or merge operators. We use expanders.
- We hybridize DDs with ALNS in our routing models.
- We use reducers as our primary inference technique.

Decision diagrams in action


Hey! Listen! Here's what you're about to see

- 2 different models (knapsack and CPDTSP)
- Solve the "naive" formulation (that's the restricted diagram)
- Add bounds (through relaxation)
- Add a reducer



0-1 knapsack model

Pickup and delivery TSP

Did it work? Let's look at some results

0-1 knapsack model

Capacitated pickup & delivery TSP

•	Search, just search	Optimize <u>6 pairs</u> in milliseconds!
---	---------------------	--

- Search + relaxation
 Optimize <u>8 pairs</u> in milliseconds!
- Search + relaxation + inference Optimize 10 pairs in milliseconds!

Takeaways from this talk

- Decision diagrams get us a step closer to <u>more natural</u> <u>modeling</u> for optimization problems
- They <u>balance lots of characteristics</u> of other solving paradigms and technologies
- We have found that they are a <u>practical solution for</u> <u>real-time optimization</u> problems

A bit of time for Q&A

Next moves

Head to nextmy.io

Try Nextmv for free >>

Get started with a working decision model in minutes

Documentation >>

Read in-depth tutorials and how-to guides

Blog posts >>

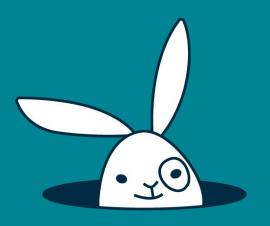
Peruse release roundups, customer stories, and more

Videos and techtalks >>

Watch presentations and product tutorials

Content continuum updates >>

Stay current with our newsletter


UP NEXT

Routing for package delivery

nextmv.io/videos

Thank you!

